Advances in extreme learning machines (ELM2014)
نویسندگان
چکیده
Computational intelligence techniques especially neural networks have been attracting a large number of researchers' attentions in the past three decades. It has been well known that conventional learning methods on neural networks have apparent drawbacks and limitations including: (1) slow learning speed, (2) trivial human tuned parameters, and (3) complicated learning algorithms. Extreme Learning Machine (ELM) is an emerging learning technique proposed for generalized single-hidden layer feedforward networks (SLFNs). ELM can overcome the abovementioned drawbacks and limitations of the conventional computational intelligence techniques. Distinguished from the conventional learning theory, the essence of ELM is that the hidden layer of the generalized SLFNs need not be tuned. One of the typical implementations of ELM is that the hidden layer parameters of ELM can be randomly generated. There may have different ways to obtain the output weights of ELM. This special issue of Neurocomputing includes 34 original papers selected from the papers presented at the International Workshop of Extreme Learning Machines (ELM 2012), Singapore, 11–13 December 2012. Amongst these contributions in this special issue, some developments on both theoretical aspects and various domain applications can be found. The following summarizes these works:
منابع مشابه
A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملStable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems
Rough extreme learning machines (RELMs) are rough-neural networks with one hidden layer where the parameters between the inputs and hidden neurons are arbitrarily chosen and never updated. In this paper, we propose RELMs with a stable online learning algorithm for the identification of continuous-time nonlinear systems in the presence of noises and uncertainties, and we prove the global ...
متن کاملA New Method for Detecting Ships in Low Size and Low Contrast Marine Images: Using Deep Stacked Extreme Learning Machines
Detecting ships in marine images is an essential problem in maritime surveillance systems. Although several types of deep neural networks have almost ubiquitously used for this purpose, but the performance of such networks greatly drops when they are exposed to low size and low contrast images which have been captured by passive monitoring systems. On the other hand factors such as sea waves, c...
متن کاملOutlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means
One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 74 شماره
صفحات -
تاریخ انتشار 2011